S]] Embedded Micro Solutions Version 2.2

More Serial Ports! SPI-to-Serial for .NET Micro Framework v2.2

By John R. Malin and Sean D. Liming
SJJ Embedded Micro Solutions

August 2010

Overview

RS-232 has been around since the beginning of modern computing. In 1969, a standard was
introduced, and since then RS-232 can be found in almost every computing system. Even
modern system-on-chips (SOC'’s) offer a few serial ports. With many embedded systems moving
to SOC solutions, finding the right mix of features and capabilities can make it difficult to support
all desired hardware 10 configurations directly from the SOC.

After listening to customer feedback on different features needed in .NET Micro Framework,
serial support is one of the most requested. “Need more serial ports!” Since SOCs limit the
number of serial ports because of the pins available on the chip, another serial port, SPI, offers a
way to add more RS-232 ports to the system. SPI is an open bus architecture that can support a
number of devices such as Analog-to-Digital converters, Real-Time controllers (RTC), SPI-to-
Ethernet modules, GPIO expanders, 7-segment LED drivers, various PIC controllers, etc. Best of
all you can interface a number of devices from a single SPI port and make the devices address
selectable. In the end you can have virtually as many devices as there are GPIO lines to enable
them.

The Hardware

Of particular interest, is a SPI-to-RS-232 solution. A brief search of the Internet results in a
solution from Maxim Integrated Products (http://www.maxim-ic.com/). Maxim provides a couple
of IC solutions — MAX3110E (5V) and MAX3111E (3V). Both chips come in DIP packaging, which
makes it easy to prototype. Figure 1 shows the circuit for the MAX3110E connected to EMAC's
iPac-9302 board. This solution is for a single SPI-to-RS-232, but by adding an OR gate to OR a
GPIO line and processor /CS line to control the /CS line of the MAX3110E/3111E, you can add
other SPI devices to the SPI bus. For this exercise, we will keep the solution simple.

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 1

S]] Embedded Micro Solutions Version 2.2

U1
7
2812007 vee -
8R1IN v.ls
LR2IN C2.125
c2+/24
TN 23
14 c1-
Ly c1+22
12N 21
IRTS
j R1OUT /SHDN {22
RX
R20UT IRQEE——— < IRQ out to iPac-9302 GPIO interrupt
u2 j/CTs /csi8
. 10 SCLK 1L 5
X1 X1 DOUTHE—
GND o138 %2 DIN 15,
i el GND jADCl ADcolz
3.68 MHz Xstal MAX3110E iADCB ADCZEL
GND ADC4
-8IGND GNDZ-
10NTR3 INTR1{2-
12ip pio_01 g PLDIO_oo0{1L
1415 pio 03 o PLDIO_02}13
16ip D PWM3 PLD_PWM215
el T GNDHZ
20lEGpio[L4yPWML o EGPIO[L3)12S 42
221GND i GNDf21
244SFRML o SCLK1[23
L 26lssprx1 & SSPTX1[23
28/GND < GND{2Z
30iasyNC a ABTCK[22
32{psD Aspo3L
341EGPIO[M)I2S ARSTN|33
38iEGPIo[B)I2S EGPIO[5)I2S(32
381GND GND3Z
4013 3v_vce 5v_vcc[32

Figure 1 SPI-to-Serial Solution for the iPac-9302

Parts List:

1. MAX3110E or MAX3111E DIP or SMT — DIP makes it easier to bread board. Make sure
you wire the correct supply voltage.

2. 3.68 MHz Ceramic Resonator. DigiKey part number — XC1017-ND. Manufacturing P/N:
ZTT-3.68MG

3. Jumper Wire

4. 9-pin RS-232 Connector

5. Optional: OR-gate for connecting other SPI devices to the SPI bus and addressing them
via GPIO line ORed with the chip select (SFRM1).

The earlier versions of .NET Micro Framework didn’t support serial interrupts. This was a problem
for internal SOC serial ports, because polling had to be used to capture receive data. Since V4.0
of the .NET Micro Framework, serial handling has been improved and serial interrupts are now
supported. As you can see from Figure 1, the MAX3110E/3111E offers an interrupt signal that
can be connected to any of the interruptible GPIO lines on the iPac-9302. Thus, not only do the
Maxim devices provide a means for adding RS-232 ports to the .NET Micro Framework device, it
also enhances the serial interface, by allowing them to be interrupt-driven.

The size of the data exchange supported by the iPac-9302 SPI hardware can be programmed for
4,5,6,7,8,9, 10, 11, 12, 13, 14, 15 and 16-bit data transactions. .NET Micro Framework only
supports 8 or 16-bit data transactions. The MAX3110E and MAX3111E take advantage of the full
16-bit data transfers to provide control and data in each transaction. When connected to a scope
you can visually see the SPI data transfers.

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 2

S]] Embedded Micro Solutions Version 2.2

Tek Al - M Paos; 2,200us CH2
+
Coupling

B Limnit

AN S

Yoltage

4 4 Invert
CH2 5.00% M 500ns CH3 7 2.00v
CH3 S0y CH4 5.00% 12-Mov-07 13:16 <10Hz

Figure 2 SPI Interface Traces of the MAX3110E

Figure 2 above shows a basic 16-bit data exchange between the iPac-9302 master-host and the
MAX3110 client device. The orange signal (1) is the chip select. The aqua signal (2) is the clock.
The purple signal (3) is the SSPTX1 (SPI Serial Output) data to the MAX3110. The green signal
(4) is the SSPRX1 (SPI Serial Input) data, which is data sent back from the MAX33110. The
MAX3110’s SPI interface can run at the maximum SPI clock frequency of the iPac-9302, which is
4AMHz.

The Application

Using the SPI-to-RS-232 circuit, we can write an application to communicate with application
terminal emulation program, like Tera Term Pro (which can be downloaded from
http://logmett.com/index.php?/download/tera-term-466.html). This simple application for the
iPac-9302 receives incoming RS-232 data on interrupt and echoes it back to the sender. The
source code for this example application is as follows:

using System;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJ33J;
using System.Threading;

namespace SPI_Serial

{
public class Program
{

public static void Main()

{
Debug.Print(Resources.GetString(Resources.StringResources.Stringl));
Debug.Print(Microsoft.SPOT.Hardware.SJJ.Version.HWProviderVer);
App myApp = new App();
myApp.Run();

}

public class App

{

static SPI.Configuration myMaximSPIPortConfig = new
SPI.Configuration(Cpu.Pin.GPIO_NONE, false, @, @, false, true, 5000, SPI.SPI module.SPI1);
SPI mySerialSPIPort = new SPI(myMaximSPIPortConfig);

oxCo0C; // 4800, 8, N, 1; no interrupts
0xCO0B; // 9600, 8, N, 1; no interrupts

//-> const UIntl6 uiMaximConfig
//-> const UIntl6 uiMaximConfig

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 3

SJJ Embedded Micro Solutions

Version 2.2

const UIntl6 uiMaximConfig = 0xC001; // 115,200, 8, N, 1; no interrupts
const UIntl6 uiMaximConfigRM = 0x0400; // Enable receive interrupt

const UIntl6 uiMaximWritePrefix = ©x8000; // OR with 8-bit data on lower byte

const UIntl6 uiMaximTxDisable = ©@x0400; //Disable char transmit on data write

const UIntl6 uiMaximSetRTS = 0x0000; //Halt incoming data: ~RTS = @ -> RTS= 1;

//update RTS only no char write

const UIntl6 uiMaximClearRTS = 0x0200; //Enable incoming data: ~RTS = 1 -> RTS= 0;

//update RTS only no char write
const UIntl6 uiMaximReadCommand = ©x0000;

const UIntl6 uiMaximReadDataValid = 0x8000; // AND with DOUT and > © if data valid

const UIntl6 uiMaximTxFull = ©x4000; // AND with DOUT and if © Tx full

const UIntl6 uiMaximReadDataMask = Ox0@0OFF; // AND with data read for data out

const ushort uiMaximCTSMask = ©x0200; // When CTS set, tranmits can be done

ushort[] uiReadCommand = new ushort[] { uiMaximReadCommand };
ushort[] uiReadData = new ushort[1];

ushort[] uiWriteData = new ushort[1];

ushort[] uiWriteReadData = new ushort[1];

ushort[] uiReadStatus = new ushort[1];

ushort uiMaximCTSStatus = ©;

InterruptPort EGPIOZ2;
OutputPort myGreenLED;

// Set up a line buffer

const int c_iBuffSize = 4096;

ushort[] uiLineBuffer = new ushort[c_iBuffSize]; //circular buffer
char[] cOutString = new char[c_iBuffSize];

static int iWriteIndex = ©;

static int iReadIndex = 0;

public void Run()
{

EGPIO2 = new InterruptPort(Pins.EGPI0O2_HDR3_15, false, Port.ResistorMode.Disabled,

InterruptModes.InterruptEdgelLow);
EGPIO2.0nInterrupt += new NativeEventHandler(EGPIO2_OnInterrupt);

myGreenLED = new OutputPort(Pins.GREEN_LED, false);

// Write serial port configuration

uiWriteData[@] = uiMaximConfig;

uiWriteData[@] |= uiMaximConfigRM; //Enable receive interrupt

mySerialSPIPort.WriteRead(uiWriteData, uiReadData);

// Enable incoming serial data, Clear RTS

uiWriteData[@] = uiMaximWritePrefix | uiMaximTxDisable | uiMaximClearRTS;

mySerialSPIPort.WriteRead(uiWriteData, uiReadStatus);
uiMaximCTSStatus = (ushort) (uiMaximCTSMask & uiReadStatus[@]);

// Character echo loop & status LED flash loop
uint iLoopCount = 9;
uint ivalidReceiveCount = 0;
bool bLEDState = true;
while (true)
{
// Check read buffer and echo back the characters
if ((iWriteIndex != iReadIndex) && (uiMaximCTSStatus != @))
{
uilWriteData[@] = uiLineBuffer[iWriteIndex];
uilWriteData[@] &= uiMaximReadDataMask;
uilWriteData[@] |= uiMaximWritePrefix;
mySerialSPIPort.WriteRead(uiWriteData, uiWriteReadData);

if ((uiWriteReadData[@] & uiMaximTxFull) != @)
{
// If write buffer not full, increment the index
// otherwise send it next time around
Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10

SJJ Embedded Micro Solutions

Version 2.2

iWriteIndex++;
if (iWriteIndex >= c_iBuffSize)
{

// Wrap index

iWriteIndex = 0;

}

// Store any valid data read during the write
if ((uiMaximReadDataValid & uiWriteReadData[@]) != 0)

{
uiLineBuffer[iReadIndex++] = uiWriteReadData[®@];
// Check for read index wrap
if (iReadIndex >= c_iBuffSize)
{
// Wrap buffer
iReadIndex = 0;
}
}

// Enable incoming serial data, Clear RTS; check CTS

uiWriteData[@] = uiMaximWritePrefix | uiMaximTxDisable | uiMaximClearRTS;

mySerialSPIPort.WriteRead(uiWriteData, uiReadStatus);
uiMaximCTSStatus = (ushort)(uiMaximCTSMask & uiReadStatus[0]);

}

//Idle loop; flash green LED to show activity without using a Thread.Sleep

if ((iLoopCount++ % 1000) == 0)

if (bLEDState)

{
bLEDState = false;
}
else
{
bLEDState = true;
//Output the valid receive char count on WriteRead
if (ivalidReceiveCount > 0)
{
Debug.Print(iValidReceiveCount.ToString());
// Reset count
ivalidReceiveCount = 0;
}
}

myGreenLED.Write(bLEDState);

}

void EGPIO2_OnInterrupt(uint datal, uint data2, DateTime time)

{
// Do NULL reads only in this interrupt handler; keep it lean & mean
mySerialSPIPort.WriteRead(uiReadCommand, uiReadData);

// Check CTS
uiMaximCTSStatus = (ushort)(uiMaximCTSMask & uiReadData[@]);

//If data valid, store it in the circular buffer; keep it lean & mean
if ((uiMaximReadDataValid & uiReadData[@]) != 9)
{

uilLineBuffer[iReadIndex++] = uiReadData[®@];

// Check for read index wrap
if (iReadIndex >= c_iBuffSize)

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com

S]] Embedded Micro Solutions Version 2.2

{
// Wrap buffer
iReadIndex = 0;

The Main routine simply calls the Run method, which is the main body of the application. The first
part of the Run method sets up the iPac-9302’s FGPIO as an interrupt port, the green LED for
output, and configures the MAX3110E serial communications. You will see 3 configuration
statements that illustrate how to set the MAX3110E for different baud rates. The examples for
4800, 8, N, 1 and 9600, 8, N, 1 are commented, and we will use 115200, 8, N, 1for this example.

The second part of the Run method is the main program loop. It is an infinite loop that monitors a
circular buffer for characters to transmit, transmits any characters it finds in the circular buffer out
the MAX3110E serial port, manages RTS/CTS flow control, and toggles the green LED as a
status indicator that the program is running.

The final part of this program is the interrupt handler. It is called when incoming interrupts from
the MAX3110 indicate that there is data coming in. The interrupt handler reads the data and
checks it to see if it is valid. Then the received data is queued for transmit to the circular buffer
that the main program loop is monitoring, so it can be echoed back out the serial port.

Simply echoing RS-232 data is a pretty basic test program, but there are important features of
this test program that should be noted. By storing the received data in the circular buffer and
letting the main program loop do the data transmission, or echo, this keeps down the processing
overhead in the interrupt handler, keeping it lean and mean. This allows the interrupt handler to
handle the receive interrupt and be ready for the next character as quickly as possible. The
transmission of the echoed characters is managed by the main program loop and can be
interrupted by incoming characters.

The desire is to not lose any incoming characters, but with a non-real-time system, like .NET
Micro Framework, this can be a challenge. Keeping interrupt latency to a minimum, managing
the data stream flow-control, and controlling character burst rate are strategies that can be
employed, but there are certain timing aspects of the SPI-Serial chip in conjunction with the
internal design of the .NET Micro Framework that cannot be changed. The .NET Micro
Framework uses an ISR/IST interrupt management model. That is, there is an interrupt service
routine sitting on the hardware fielding the hardware interrupts as they come in. The ISR then
determines whom the interrupt is for and hands it off to the appropriate interrupt service thread.
This IST then calls the registered interrupt handler that is in the managed code of your
application. There is latency associated with this process. The .NET Micro Framework scheduler
determines what threads will be run in what priority, and the .NET Micro Framework scheduler is
not preemptive. That is to say that when the ISR signals the scheduler to activate a particular IST,
the IST is given priority over normal application process threads, but it may not be immediately
scheduled to run. If there is another thread running, even at a lower priority than the IST, the
scheduler will not preempt that thread and activate the IST. If all application process threads are
suspended, then the IST will run immediately, otherwise the IST will be queued to run the next
time the scheduler reschedules threads. This will happen if the active thread does a thread sleep
or is suspended for any reason, or it will eventually happen on the 20 mSec time hack that the
scheduler responds to for mandatory thread scheduling. Therefore, the response to an interrupt
can be as quick as the ISR/IST response latency or it can be as long as 20 mSec plus the
ISR/IST response latency. If you have repeated interrupts coming faster than 20 mSec, there will
likely be times when an interrupt is missed.

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 6

S]] Embedded Micro Solutions Version 2.2

When using this application to echo characters that are entered from a keyboard as someone
types, there is little likelihood of missing an interrupt and dropping a character. An average typist
can sustain a typing rate of about 60 words-per-minute, and a typical fast typist can sustain bursts
of characters at 80 words-per-minute. These rates are standardized for an average word size of
5 characters-per-word. Therefore, a fast typist can send bursts of characters from a keyboard at
400 characters-per-minute or 150 mSec per character. This is more than 7 times the worst-case
interrupt response time, so one would not expect to miss any interrupts from human generated
data streams. If we were to burst characters over the RS-232 link by sending a file, we could
send the characters with virtually no transmit delay between characters. We have configured the
RS-232 link to operate at 115200 baud (bits-per-second), with an 8-bit character and a stop bit.
Each time an RS-232 character is sent out there is an initial start-bit, followed by the character
bits, and finally the stop-bit. Therefore, there are 10 bits-per character. At 115200 baud, each bit
is almost 9 uSec long. Each character would then be almost 90 uSec long. This is significantly
shorter than the worst-case interrupt latency. The MAX3110E helps us by having an 8-character
internal buffer. At 115200 baud, it would then take nearly 720 uSec or .72 mSec to fill the
MAX3110E’s receive buffer. This is still significantly shorter than the worst-case interrupt latency,
so characters could still be dropped periodically.

The MAX3110E provides hardware flow-control with the RTS/CTS signals. When a character is
transmitted out the RS-232 link, the MAX3110E sets RTS. If the sending device is configured for
RTS/CTS, hardware flow-control, it will stop sending until RTS is cleared. This application
manages that by leaving RTS set until the main program loop has completed sending a character
from the circular buffer and has completed managing the circular buffer pointers. During that time
the sending device will not send characters. This helps to throttle the data stream to keep it from
overrunning the receive buffer, but managing RTS is done through the SPI interface as well. The
writing of a SPI command must be managed by the scheduler as well and therein is the rub. You
cannot throttle the data stream fast enough to manage all timing conditions when you have to use
the SPI interface as a control interface, as well as, a data read and write interface. This means
that we are left with introducing delays between characters to keep the data stream at a
manageable rate for the .NET Micro Framework device. It should be obvious that introducing a
20 mSec delay between each character in burst mode will guarantee that no characters will be
dropped when the interrupt latency is at its maximum, but with RTS flow control, we can actually
reduce the inter-character delay to 17 mSec and have bursts of characters received without
dropping any characters. This particular application was tested with bursts of 240 characters and
17 mSec inter-character delay, and all characters were received and echoed repeatedly. Figure
3 shows the Tera Term serial port configuration parameters that were used to test the application,
note the transmit delay of 17 mSec/char and hardware flow-control enabled.

=

Port: JCOMZ b
Baud rate:] 115200

Data: 3 bit | Cancel

Parity: none -
Stop: [tee = =
Flow control: hardware ~ |

Transmit delay

[T msec/char [G_ msecfline

il

Figure 3 Tera Term Serial Port Configuration

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 7

S]] Embedded Micro Solutions Version 2.2

Finally, to manage a slow sending device, CTS must be monitored; and no data must be
transmitted when CTS is set, which is controlled by the RTS line of the sending device. At the top
of the main program while-loop, CTS is tested and characters will not be transmitted if the
sending device has set its RTS. CTS is checked whenever RTS is cleared in the main program
loop and in the interrupt handler when each character is received. This completes the RTS/CTS
flow-control model and keeps the application from overrunning the sending device when echoing
characters.

Managed Code Driver

To simplify the application code, some of the more mundane operations that must be done
through the SPI to configure the SPI-Serial device, control the SPI-Serial device, and send and
receive data, as well as, the bit fields and other constants can be wrapped into a managed code
driver class. The following is the source code listing of an example managed code driver,
SPI_Serial_Driver:

using System;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;
using System.10.Ports;

namespace Microsoft.SPOT._Hardware.SJJ._.SPI_Serial_Driver

public static class Version

{
public const string SpiSerVersion = "SJJ SPI-Serial Driver V4.1.1.1";
}
public class SPI_Serial_Driver
{

//Default configurations

protected BaudRate ssBaudRate = BaudRate.Baudratell5200;
protected Parity ssParity = Parity.None;

protected int ssDataBits = 8;

protected StopBits ssStopBits = StopBits.One;

protected ushort[] usSpiSerConfig = new ushort[1];
protected ushort[] usSpiSerRTS = new ushort[1];
protected ushort[] usWriteChar = new ushort[1];

private const UIntl6 uiMaximConfigRM = 0x0400; // Enable receive interrupt
private const UIntl6 uiMaximWritePrefix = 0x8000; // OR with 8-bit data on lower byte
private const UIntl6 uiMaximTxDisable = 0x0400; //Disable char transmit on data write
private const UIntl6 uiMaximSetRTS = 0x0000; //Haltincoming data: ~RTS = 0-> RTS=1; update RTS

/7 only no char write
private const UIntl6 uiMaximClearRTS = 0x0200; //Enableincoming data: ~RTS =1->RTS=0

// update RTS only no char write

private const ushort uiMaximCTSMask = 0x0200; // When CTS set, tranmits can be done
private const UIntl6 uiMaximReadDataMask = OxOOFF; // AND with data read for data out
private const UIntl6 uiMaximReadCommand = 0x0000;
private const UIntl6 uiMaximReadDataValid = 0x8000; // AND with DOUT and > 0 if data valid
private const UIntl6 uiMaximTxFull = 0x4000; // AND with DOUT and if 0 Tx full

public ushort[] uiReadCommand = new ushort[] { uiMaximReadCommand };

//Constructor
public SPI_Serial_Driver()

{
}

//0verloaded Configuration method
public ushort[] SPI1_Serial_Config()

usSpiSerConfig[0] = 0xC001; //115200, 8, N, 1

//Enable receive interrupt
Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 8

S]] Embedded Micro Solutions Version 2.2

usSpiSerConfig[0] |= uiMaximConfigRM;

// Return constructor default configuration
return (usSpiSerConfig);

¥
public ushort[] SP1_Serial_Config(BaudRate setBaudRate)
{ SetBaudConfig(setBaudRate);
//Enable receive interrupt
usSpiSerConfig[0] |= uiMaximConfigRM;
return (usSpiSerConfig);
3
public ushort[] SPl1_Serial_Config(BaudRate setBaudRate, int setDataBits)
{ SetBaudConfig(setBaudRate);
SetDataConfig(setDataBits);
//Enable receive interrupt
usSpiSerConfig[0] |= uiMaximConfigRM;
) return (usSpiSerConfig);

public ushort[] SPI1_Serial_Config(BaudRate setBaudRate, int setDataBits,
StopBits setStopBits)
{

SetBaudConfig(setBaudRate);
SetDataConfig(setDataBits);

switch (setStopBits)
{

case StopBits.One:

{
usSpiSerConfig[0] &= OxFFBF;
break;

case StopBits.Two:

usSpiSerConfig[0] |= 0x0040;
break;

default:

//default to 1 stop bit
usSpiSerConfig[0] &= OxFFBF;
break;

}

//Enable receive interrupt
usSpiSerConfig[0] |= uiMaximConfigRM;

return (usSpiSerConfig);
3

public ushort[] ClearRTS()
{

usSpiSerRTS[0] = uiMaximWritePrefix | uiMaximTxDisable | uiMaximClearRTS;

return (usSpiSerRTS);
}

public bool CheckCTS(ushort uiReadData)
{

bool bReturnval = false;

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 9

S]] Embedded Micro Solutions Version 2.2

if ((uiReadData & uiMaximCTSMask) != 0)

bReturnval = true;

3
return (bReturnval);
3
public ushort[] WriteChar(ushort usChar)
{
usWriteChar[0] = (ushort) (usChar & uiMaximReadDataMask) ;
usWriteChar[0] |= uiMaximWritePrefix;
return (usWriteChar);
3
public bool CheckDataValid(ushort uiReadData)
{
bool bReturnval = false;
if ((uiMaximReadDataValid & uiReadData) !'= 0)
bReturnval = true;
3
return (bReturnval);
b
public bool CheckTxEmpty(ushort uiReadData)
{
bool bReturnval = false;
if ((uiReadData & uiMaximTxFull) != 0)
bReturnval = true;
3
return (bReturnval);
b
private void SetBaudConfig(BaudRate setBaudRate)
{

// Clear baudrate bits
usSpiSerConfig[0] &= OxFFFO;

switch (setBaudRate)

{
case BaudRate.Baudratell5200:

{
usSpiSerConfig[0] |= 0x0001;
break;
case BaudRate.Baudrate57600:

usSpiSerConfig[0] |= 0x0002;
break;

¥
case BaudRate.Baudrate38400:

usSpiSerConfig[0] |= 0x0009;
break;

b
case BaudRate.Baudratel9200:

usSpiSerConfig[0] |= Ox000A;
break;

T
case BaudRate.Baudrate9600:

usSpiSerConfig[0] |= 0x000B;
break;

T
case BaudRate.Baudrate4800:

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com

08/30/10

10

S]] Embedded Micro Solutions Version 2.2

{
usSpiSerConfig[0] |= 0x000C;
break;
3
case BaudRate.Baudrate2400:

usSpiSerConfig[0] |= 0x000D;
break;

b
case BaudRate.Baudratel200:

usSpiSerConfig[0] |= OxO0O00E;
break;

case BaudRate.Baudrate600:

usSpiSerConfig[0] |= OxO000F;
break;

default:
//default to 115200 baud

usSpiSerConfig[0] |= 0x0001;
break;

}

private void SetDataConfig(int setDataBits)
if (setDataBits == 8)
{ usSpiSerConfig[0] &= OXFFEF;
else if (setDataBits == 7)

usSpiSerConfig[0] |= 0x0010;

¥
else
//default to 8 data bits
usSpiSerConfig[0] &= OXFFEF;
b

}

Note that all the MAXIM SPI specific constants and bit fields are contained in the driver, and do
not have be defined in the application. They will be hidden from the application program, and
therefore, simplify the application code.

When the driver class is instantiated, the constructor initializes the default serial port settings to
115200 baud, 8 character bits, no parity, and 1 stop bit. The driver class then provides a series
of methods to interface to the driver. The methods that are used in cooperation with the
SPIl.WriteRead() API, accept various arguments and data and return a one-element ushort buffer
pointer to a properly formatted SPI write command. The application developer doesn’t need to
know anything about the bit-field formats for the MAXIM SPI commands.

The methods that are used with the SPl.WriteRead() are:

e SPI_Serial_Config — which is an overloaded method that allows selection of the class
default configurations settings, or one can set just the baud rate, the baud rate and the
data bits, or the baud rate, data bits, and stop bits using the supplied overloads.

e ClearRTS — which clears RTS to allow the sending application to send data. This
command clears RTS without reading or writing any RS-232 data.

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 11

S]] Embedded Micro Solutions Version 2.2

e WriteChar — causes a single character to be transmitted out the RS-232 port.
The methods that are used to analyze data that is returned, read, from the SPI device are:
e CheckCTS — checks of CTS is set and returns true or false.

e CheckDataValid — checks data read from the RS-232 port and returned through the SPI
to see if it is valid received data or status only. It return true or false.

e CheckTxEmpty — check returned data status for the status of the MAXIM transmit buffer
to see if there is room for the next character to be transmitted out the RS-232 port. It
returns true or false.

Finally, there is a public, one-member, ushort array that contains the MAXIM read data command,
that is used in conjunction with the SPl.WriteRead API to read incoming RS-232 data, and a
public Version class with a SpiSerVersion string that can be accessed to verify the current version
of the driver.

Note: the MAXIM chip does not support all possible RS-232 configurations, i.e. baud rates,
character sizes, and stop bits. If a configuration parameter is supplied that is not supported by
the MAXIM chip, the driver will use the default setting, instead.

Now that we have the MAXIM SPI interface wrapped in a managed code driver, let's look at the
code listing for SPI_Serial2, with is a rewrite of the original SPI_Serial test application using the
new managed code driver:

using System;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using Microsoft.SPOT.Hardware.SJJ;

using Microsoft.SPOT.Hardware.SJJ.SPI1_Serial_Driver;
using System.Threading;

namespace SPI1_Serial2
public class Program

public static void Main()

{
Debug.Print(Resources.GetString(Resources.StringResources.Stringl));
Debug.Print(Microsoft.SPOT.Hardware.SJJ.Version.HWProviderVer);
Debug.Print(Microsoft.SPOT.Hardware.SJJ.SPI_Serial_Driver.

Version.SpiSerVersion);

App myApp = new App(Q);
myApp-RunQ;

¥

public class App

{

static SPIl.Configuration myMaximSPIPortConfig = new
SPI1.Configuration(Cpu.Pin.GPIO_NONE, false, 0, 0, false, true, 5000,
SP1.SP1_module.SPI11);

SPI mySerialSPIPort = new SPI(myMaximSPIPortConfig);

static SPI1_Serial_Driver mySpiSerial = new SPI_Serial_Driver();

InterruptPort EGP102;
OutputPort myGreenLED;

ushort[] uiReadData = new ushort[1];
ushort[] uiWriteData = new ushort[1];
ushort[] uiReadStatus = new ushort[1];

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 12

S]] Embedded Micro Solutions Version 2.2

ushort[] uiWriteReadData = new ushort[1];
bool bMaximCTSStatus = false;

const int c_iBuffSize 4096;

ushort[] uiLineBuffer new ushort[c_iBuffSize]; //circular buffer
static int iWritelndex = 0;

static int iReadlndex = 0;

public void Run(Q)
{

EGP102 = new InterruptPort(Pins.EGPI02_HDR3_15, false,
Port._ResistorMode.Disabled, InterruptModes. InterruptEdgelLow);
EGPI102.0OnInterrupt += new NativeEventHandler(EGP102_Onlinterrupt);

myGreenLED = new OutputPort(Pins.GREEN_LED, false);
// Write serial port configuration

mySerialSPIPort.WriteRead(mySpiSerial .SPI_Serial_Config(System.10.Ports.BaudRate.Baudrate
115200, 8, System.l0.Ports.StopBits.One), uiReadData);

// Enable incoming serial data, Clear RTS
mySerialSPIPort.WriteRead(mySpiSerial.ClearRTS(), uiReadStatus);

// Check CTS status
bMaximCTSStatus = mySpiSerial .CheckCTS(uiReadStatus[0]);

// Character echo loop & status LED flash loop
uint iLoopCount = O;

uint iValidReceiveCount = 0O;

bool bLEDState = true;

while (true)

// Check read buffer and echo back the characters
if ((iWritelndex != iReadlndex) && bMaximCTSStatus)

mySerialSPIPort_WriteRead(mySpiSerial _WriteChar(uiLineBuffer[iWritelndex]),
uiWriteReadData);

if (mySpiSerial.CheckTxEmpty(uiWriteReadData[0]))
{

// 1f write buffer not full, increment the index otherwise
// send it again next time around
iWritelndex++;
if (iWritelndex >= c_iBuffSize)
{
// Wrap index
iWritelndex = 0;

}

// Store any valid data read during the write
if (mySpiSerial.CheckDataValid(uiWriteReadData[0]))
{

uiLineBuffer[iReadIndex++] = uiWriteReadData[0];

// Check for read index wrap
if (iReadlndex >= c_iBuffSize)
{

// Wrap buffer

iReadlndex = 0;

}

// Enable incoming serial data, Clear RTS; check CTS
mySerialSPIPort_WriteRead(mySpiSerial .ClearRTS(), uiReadStatus);
bMaximCTSStatus = mySpiSerial .CheckCTS(uiReadStatus[0]);

}

// 1dle loop; flash green LED to show activity without using a
// Thread.Sleep

ifT ((iLoopCount++ % 1000) == 0)

{

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 13

S]] Embedded Micro Solutions Version 2.2

if (bLEDState)

bLEDState = false;
s

else

{
bLEDState = true;

//0utput the valid receive char count on WriteRead
if (ivalidReceiveCount > 0)

Debug.Print(iValidReceiveCount.ToString());

// Reset count
ivValidReceiveCount = 0;

}

3
myGreenLED .Write(bLEDState);

}

void EGPI02_Onlinterrupt(uint datal, uint data2, DateTime time)
{

// Do NULL reads only in this interrupt handler; keep it lean & mean
mySerialSPIPort.WriteRead(mySpiSerial .uiReadCommand, uiReadData);

// Check CTS
bMaximCTSStatus = mySpiSerial .CheckCTS(uiReadData[0]);

//1T data valid, store it in the circular buffer; keep it lean & mean
if (mySpiSerial.CheckDataValid(uiReadData[0]))
{

uiLineBuffer[iReadIndex++] = uiReadData[0];

// Check for read index wrap
if (iReadlndex >= c_iBuffSize)

// Wrap buffer
iReadlndex = 0;

}

What cannot be seen in the listing is that to add the SPI-Serial driver to the application a new
reference must be added. From the Project dropdown in Visual Studio, select Add reference...,
select the Browse tab, and navigate to and select SP1_Serial_Driver.dll, the SPI-Serial driver DLL.
Note that there is a new using statement to reference the namespace of the SPI-Serial driver:
using Microsoft.SPOT.Hardware.SJJ.SPI1_Serial Driver;

Note that all the MAXIM SPI-related constants and bit fields have been removed. Next, check
each of the mySerialSPIPort.WriteRead() statements. You can see that each now uses either a
driver method or a driver public variable to provide the appropriately formatting SPI command.
Finally, you will see that each of the status check, for CTS, valid read data, or TX buffer status
have been replaced with driver methods that can be simply tested for true or false.

Note that there would be 2 ways we could have dealt with putting the circular buffer into the
driver: simply making it a public variable that you could access just the same way you access the
one currently in the application code or putting a class method wrapper around it. There is a lot
of call overhead when calling a class method that is way more than calling a simple function.
This method would have had to be called in the interrupt handler. We already have the read
class method in the interrupt handler, so in an effort not to burden the interrupt handler with
another class method call, the best the way it is to leave it to the application developer to

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 14

S]] Embedded Micro Solutions Version 2.2

implement the circular buffer. This improves interrupt handler performance and gives the
application developer complete flexibility on the implementation of this buffer.

Clearly, for this application or any other SPI-Serial applications using the MAXIM SPI-Serial chip,
the SPI-Serial driver simplifies the code structure and allows the software developer to
concentrate on the specifics of the application and not the complexities of the MAXIM SPI-Serial
chip.

Windows is a registered trademark of Microsoft Corporation.
MAXIM is a registered trademark of Maxim Integrated Products.

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC., All Rights Reserved.
WWW.Sjjmicro.com
08/30/10 15

